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Abstract

Malware authors have recently begun using emulation technology to obfuscate their code. They convert native
malware binaries into bytecode programs written in a randomly generated instruction set and paired with a native
binary emulator that interprets the bytecode. No existing malware analysis can reliably reverse this obfuscation
technique. In this paper, we present the first work in automatic reverse engineering of malware emulators. Our
algorithms are based on dynamic analysis. We execute the emulated malware in a protected environment and record
the entire x86 instruction trace generated by the emulator. We then use dynamic data-flow and taint analysis over the
trace to identify data buffers containing the bytecode program and extract the syntactic and semantic information
about the bytecode instruction set. With these analysis outputs, we are able to generate data structures, such
as control-flow graphs, that provide the foundation for subsequent malware analysis. We implemented a proof-
of-concept system called Rotalumè and evaluated it using both legitimate programs and malware emulated by
VMProtect and Code Virtualizer. The results show that Rotalumè accurately reveals the syntax and semantics of
emulated instruction sets and reconstructs execution paths of original programs from their bytecode representations.

1. Introduction

Malware authors often attempt to defeat state-of-the-art malware analysis with obfuscation techniques that are becoming
increasingly sophisticated. Anti-analysis techniques have moved from simple code encryption, polymorphism, and metamor-
phism to multilayered encryption and page-by-page unpacking. One new alarming trend is the incorporation of emulation
technology as a means to obfuscate malware [23], [35]. With emulation techniques maturing, we believe that the widespread
use of emulation for malware obfuscation is imminent.

Emulation is the general approach of running a program written for one underlying hardware interface on another. An
obfuscator that utilizes emulation would convert a binary program for a real instruction set architecture (ISA), such as x86,
to a bytecode program written for a randomly generated virtual ISA and paired with an emulator that emulates this ISA on
the real machine. Figure 1 shows an example of this obfuscation process. The obfuscator has complete freedom to choose
the semantics of the bytecode instructions, and entities such as virtual registers and memory addresses can be independent
from the underlying real machine. For example, the Java virtual machine executes on commodity register machines but
emulates a stack machine ISA. The obfuscated program is the generated emulator together with a data block containing
bytecode. Code protection tools such as Code Virtualizer [23] and VMProtect [35] are real-world examples of this class of
obfuscators.

Without knowledge of the source bytecode language, many existing malware analysis schemes are crippled in the face
of malware obfuscated with emulation. At one end of the spectrum, emulators completely defeat any pure static analysis,
including symbolic execution. The code analyzed by static analyzers is that of the emulator; the true malware logic is
encoded as bytecode contained in some memory buffer that is treated as data by the analysis. At the other extreme, pure
dynamic analysis based approaches that treat the emulated malware as a black box and simply observe external events are not
affected. However, pure dynamic analysis schemes cannot perform fine-grained instruction level analysis and can discover
only a single execution path of the malware. More advanced analysis techniques employing dynamic tainting, information
flow analysis, or other instruction level analysis fall in the middle of the spectrum. In the context of malware emulators, these
techniques analyze the instructions and behaviors of the generic emulator and not of the target malware. As an example,
multi-path exploration [21] may explore all possible execution paths of the emulator. Unfortunately, these paths include all
possible bytecode instruction semantics and all possible bytecode programs, rather than the paths encoded in the specific
bytecode program of the malware instance. In short, we need new techniques to analyze emulated malware.

The key challenges in analyzing a malware emulator are the syntactic and semantic gaps between the observable (x86)
instruction trace of the emulator and the non-observable (interpreted) bytecode trace. Theoretically, precisely and completely



Figure 1. Using Emulation for Obfuscation

identifying an emulator’s bytecode language is undecidable. Practically, the manner in which an emulator fetches, decodes,
and executes a bytecode instruction may enable us to extract useful information about a bytecode program. By analyzing
a malware emulator’s (x86) trace, we can identify portions of the malware’s bytecode program along with syntactic and
semantic information of the bytecode language.

In this paper, we take the first leap toward automatic reverse engineering of unknown malware emulators. Our goal is to
extract the bytecode malware trace (program) and the syntax and semantics of the bytecode instructions to enable further
malware analysis, such as multi-path exploration, across the bytecode program. We have developed an approach based on
dynamic analysis. We execute the malware emulator and record the entire x86 instruction trace generated by the malware.
Applying dynamic data-flow and taint analysis techniques to these traces, we identify data regions containing the bytecode
program and extract information about the bytecode instruction set. Our approach identifies the fundamental characteristics
of decode-dispatch emulation: an iterative main loop containing bytecode fetches based upon the current value of a virtual
program counter, decoding of opcodes from within the bytecode, and dispatch to bytecode handlers based upon opcodes.
This analysis yields the data region containing the bytecode, syntactic information showing how bytecodes are parsed into
opcodes and operands, and semantic information about control transfer instructions.

We have implemented a prototype called Rotalumè that uses a QEMU [6] based component to perform dynamic analysis.
The analysis generates both an instruction trace in an intermediate representation (IR) and a dynamic control-flow graph
(CFG) for offline analysis. Rotalumè reverse engineers the emulator using a collection of techniques: abstract variable binding
analyzes memory access patterns; clustering finds associated memory reads, such as those fetching bytecode during the
emulator’s main loop; and dynamic tainting identifies the primary decode, dispatch, and execute operations of the emulator.
The output of our system is the extracted syntax and semantics of the source bytecode language suitable for subsequent
analysis using traditional malware analyses. We have evaluated Rotalumè on legitimate programs and on malware emulated
by VMProtect and Code Virtualizer. Our results show that Rotalumè accurately identified the bytecode buffers in the emulated
malware and reconstructed syntactic and semantic information for the bytecode instructions.

The main contributions of our paper are:
• We formulate the research problem of automatic reverse engineering of malware emulators. To the best of our knowledge,

this is the first work in this area. Although our current work assumes a decode-dispatch emulation model, we believe
that our ideas and techniques are applicable to other emulation models: by analyzing an emulator’s execution trace
using a given emulation model on how a bytecode instruction is fetched and executed, we can identify the bytecode
region and discover the syntax and semantics of the bytecode instructions.

• We develop a framework and working prototype system that includes: a novel method to identify candidate memory
regions containing bytecode, a method for identifying dispatch and instruction execution blocks, and a method for
discovering bytecode instruction syntax and semantics. The output of our system can be used by existing analysis tools
to analyze and extract malware behavior; for example, the identified bytecode can be converted to x86 instructions for
static and/or dynamic analysis.

• Although our work is in the context of malware, we believe that this line of research will help spawn work in several
other areas. For example, similar techniques may help reverse engineer script interpreters, providing novel ways to
analyze scripting languages with binary analysis.

Section 2 provides a background of program emulation techniques. Section 3 provides the details of our algorithms that
identify bytecode regions as well as bytecode syntax and semantics. Section 4 describes our prototype system, Rotalumè.
Section 5 reports results on evaluating Rotalumè on VMProtect and CodeVirtualizer using both real-world and synthetic
malware programs. Section 6 discusses open problems of reverse engineering malware emulators. Section 7 compares our
work with other relevant research. Section 8 discusses future directions and concludes the paper.



Figure 2. An example of a simple-interpreter (decode-dispatch) based emulator, executing program written in V

2. Background

The term emulation generally expresses the support of a binary instruction set architecture (ISA) that is different from
that provided by the computer system’s hardware. This section describes emulation’s use in program obfuscation and the
various emulation techniques possible.

2.1. Using Emulation for Obfuscation

Code authors, including malware authors, are now using emulation to obfuscate programs. In Figure 1, malicious software
M consists of a program Px86 written in native x86 code and directly executable on x86 processors. Analyzers with
knowledge of x86 can therefore perform various analyses on the malware. In order to impede analysis, an adversary can
choose a new ISA L and translate Px86 to PL that uses only instructions of L. In order to execute PL on the real x86
machine, the adversary introduces an emulator EML

x86 that emulates the ISA L on x86. The adversary can now spread a
new malware instance M ′ that is a combination of PL and EML

x86.
To further impede possible analysis, a malware author can choose a new, randomly-generated bytecode language for every

instance of the malware and make tools to automatically generate a corresponding emulator. Therefore, results found about
the bytecode language after reverse engineering one instance of the emulator will not be useful for another instance. Thus,
automated reverse engineering of EML

x86 is essential to malware analysis given that each malware instance has a completely
unknown bytecode instruction set L and a previously unseen emulator instance.

2.2. Emulation Techniques

Various emulation techniques are widely used in software-based virtual machines, script interpretation, run-time abstract
interfaces for high-level languages (e.g. Java virtual machine (JVM)), and other environments. Although these are very
complex systems, they are variations of the simple-interpreter method, also known as the decode-dispatch approach [31].
Decode-dispatch is used in environments where performance overhead is not an issue. The simple interpreter utilizes a main
loop that iterates through three phases for every bytecode instruction: opcode decode, dispatch, and execute. The decode phase
fetches the part of an instruction (opcode) that represents the instruction type. The dispatch phase uses this information to
invoke appropriate handling routines. The execute phase, which is performed by the dispatched handling routine, performs
additional fetches of operands and executes the semantics of the instruction. We first provide an illustration of how a
decode-dispatch emulator works and then discuss the other broad variations in emulation methods.

We show the design of the simple interpreter based emulators using an illustrative running example. Figure 2 shows a
fraction of a simple decode-dispatch based emulator [11] written in a pseudo-C like language. The emulator executes a
hypothetical bytecode language for a machine we named V. For conciseness, we describe only the aspects of this machine
relevant to the example. This machine supports variable length instructions similar to x86. There are general purpose registers
named R1 to R24. A special register called RF maintains a flag that can be either 0 or 1 based on some previously executed
instruction, and it is used for performing conditional jumps. We show three instructions supported by the machine: ADD,
JUMP and CJMP. While the ADD instruction takes three operands, both jump instructions take an immediate target address.
The conditional jump instruction CJMP jumps to the target if RF is 1, otherwise control flows to the next instruction.



In this example, the emulator fetches instructions from the emulated program stored in the buffer P. An emulator maintains
a run-time context of the emulated program, which includes the necessary storage for virtual registers and scratch space.
The emulator maintains execution context via a pointer to the next bytecode instruction to be executed, which we denote
throughout the paper as the virtual program counter or VPC. For the example emulator, the VPC is an index into the buffer P.
Here, decoding is performed by fetching the opcode from P[VPC], i.e. the first byte of the instruction. Dispatch uses a jump
table resulting from switch-case constructs in C. Three execution routines for the three instructions are shown in the
example. The execADD routine updates the register store by adding relevant virtual register values. The execJUMP routine
updates the VPC with an immediate address contained in the instruction. Finally, execJMP shows how the conditional
branch updates the VPC depending on the flag RF. It is interesting to note that the branch is emulated without using any
conditional jump, but rather with a direct address computation. This shows how an emulator provides a way to remove
identifiable conditional branches, making it hard for analysis approaches such as multi-path exploration to even explore any
branch related to the emulated program.

More sophisticated emulation approaches often improve efficiency. The threaded approach [16] improves performance by
removing the central decode-dispatch loop. The decoding and dispatching logic is appended to the execution semantics by
adding a copy of that code to the end of each execution routine. This removes several branches and improves execution
performance on processors that have branch prediction. By using pre-decoding [19], the logic of decoding instructions to
their opcodes and operands executes only once per unique instruction, and the program subsequently reuses the decoded
results. Hence, the opcode decoding phase is not executed for each executed bytecode instruction. The direct threading
approach [5] removes jump table lookups by storing the function address that executes the instruction semantics together
with the predecoded results. Therefore, the dispatch of the next instruction’s execution routine is an indirect control transfer
at the end of the previous bytecode instruction’s routine. Finally, dynamic translation [30], one of the most efficient methods
of emulation, converts blocks of the emulated program into executable instructions for the target machine and caches them
for subsequent execution. These categories of emulators maintain a VPC that is updated after blocks of the translated native
instructions are executed.

Dynamic translation based emulators have very complex behavioral phases. They may seem attractive to malware authors
because of their analysis and reverse engineering difficulty. However, like page-level unpacking used in some packers [29],
dynamic translation reveals large blocks of translated code as a program’s execution proceeds. This approach reduces the
advantage of using emulation as an obfuscation because the heuristics used by automated unpackers can capture the fact
that new code was generated and executed. In this paper, we focus our methods on automatically reverse engineering the
decode-dispatch class of emulators.

Several challenges complicate automatic reverse engineering of interpreter-based emulators. First, no information of the
bytecode program, such as its location, are known beforehand. Second, no information regarding the emulator’s code
corresponding to the decode, dispatch, and execution routines is known. Finally, we anticipate that emulator code varies in
terms of how it fetches opcodes and operands, maintains context related to the emulated program, dispatches code, executes
semantics, and so on. An adversary may even intentionally attempt to complicate the identification of bytecode by storing
the bytecode program in non-contiguous memory or use multiple correlated variables to maintain the VPC.

Our current work, as a first step, advances the state-of-the-art and significantly challenges attackers. It also lays the
foundation for reverse engineering of emulators that are based on other (more advanced and efficient) approaches.

3. Reverse Engineering of Emulation

In order to enable malware analysis of an emulated malware instance, it is necessary to understand the unknown bytecode
language used by the instance. We have developed algorithms to systematically and automatically extract the syntax and
semantics of unknown bytecode based upon the execution behavior of the decode-dispatch based emulator within a malware
instance. Our approach identifies fundamental characteristics of decode-dispatch emulation: an iterative main loop, bytecode
fetches based upon the current value of a virtual program counter, and dispatch to bytecode handlers based upon opcodes
within the bytecode. This analysis yields the data region within the malware containing the bytecode, syntactic information
showing how bytecode instructions are parsed into opcodes and operands, and semantic information consisting of native
instructions that carry out the actions of the bytecode instructions. We identify the control-flow semantics from which
structures such as a control-flow graph (CFG) can be generated. Together, these techniques provide the foundation for
overcoming the emulation layer and performing subsequent malware analysis.

Our algorithms are based on dynamic analysis. We execute the emulated malware once in a protected environment
and record the entire x86 instruction trace generated by the malware. From this trace, we extract syntactic and semantic
information about the bytecode that the malware’s emulator was interpreting during execution. The contributions made by our



approach offer the opportunities to reconstruct behavioral information about unknown bytecode interpreted by an unknown
decode-dispatch emulator and to subsequently apply traditional malware analysis to the sample.

The algorithms operate as follows:
1) Identify variables within the raw memory of the emulator based upon the access patterns of reads and writes in an

execution trace. We developed abstract variable binding, a forward and backward dynamic data-flow analysis, for this
identification.

2) Identify the subset of those variables that are candidates for the emulator’s virtual program counter (VPC). We find
possibilities by clustering the emulator’s memory reads, some of which are bytecode fetches, based upon the abstract
variable used to specify the accessed memory location.

3) Identify the boundaries of the bytecode data within the x86 application, the decode-dispatch loop and the emulator
phases. For each cluster of reads through the same abstract variable, we determine if the reads occurred during execution
of loop iteration with emulator-like operations.

4) Identify the syntax and the semantics of bytecode operations. We examine how bytecode is accessed by the emulation
phases to identify the syntax. We analyze the bytecode handler or semantics for updates to the VPC. Non-sequential
VPC updates indicate that the bytecode opcode corresponds to a control transfer operation. These control-transfer
operations allow our system to construct a CFG for the bytecode.

The following sections describe these steps in detail.

3.1. Abstract Variable Binding

A decode-dispatch emulator fetches bytecode instructions from addresses specified by a virtual program counter (VPC).
Like a program counter or instruction pointer register in hardware, a VPC acts as a pointer to the currently executing
bytecode instruction. Knowing the memory location of the VPC allows an analyzer to observe how the emulator accesses
bytecode instructions and executes them, which reveals information about the bytecode instruction syntax and semantics.
We locate an emulator’s VPC through a series of analyses, beginning with abstract variable binding.

Abstract variable binding identifies, for each memory read instruction of an execution trace, the program variable containing
the address specifying the location from which the data should be read. Consider pseudo-code of an emulator that regularly
fetches instructions pointed to by the VPC:

instruction = bytecode[VPC]

or
instruction = ∗VPC (1)

In these examples, the VPC is an index into an array of bytecode or a direct pointer into a buffer of bytecode. During its
execution, the emulator will execute these bytecode fetches many times. Although each fetch may access a different memory
location within the bytecode buffer, all fetches used the same VPC variable as the specifier of the location. Abstract variable
binding will attach a program variable, such as VPC, to every memory read instruction in the execution trace that uses that
variable to specify its access location.

Successful abstract variable binding will help our analyzer identify the VPC and the bytecode buffer used by the unknown
emulator in a malware instance. Each bytecode fetch will appear in the execution trace as a memory read instruction whose
accessed location is bound to the VPC variable. The emulator likely executes many other memory reads unrelated to bytecode
fetch, and these may have their own bindings to other variables in the program. Steps 2 and 3 of our algorithms, presented
in Sections 3.2 and 3.3, whittle down the bindings to only those of the VPC.

Our analysis of x86 instruction traces rather than source code complicates abstract variable binding in fundamental ways.
First, a binary program has no notion of high-level language variables. A compiler translating an emulator’s high-level code
into low-level x86 instructions will assign each variable to a memory location or register in a way unknown to our analysis.
Second, the x86 architecture requires all memory read and write operations accessing dynamically computed addresses to
use register indirect addressing. In case of performing a memory read using an address stored in a variable, if the variable
is assigned a memory location, then that value will be transferred into the register rather than being accessed directly. For
example, the pseudo-x86 translation of (1) may be the two-instruction sequence:

eax← [VPC] (2)
instruction← [eax] (3)



where VPC represents a pointer variable (assigned a particular memory address), eax is a register, and instruction is
a register or memory location. The first instruction loads the value of the variable VPC to eax. This value is the address used
in the second instruction where the register eax can be considered as a temporary place holder for the variable VPC. In other
words, (2) binds eax to VPC, and this binding is propagated to the read operation in (3). With limited number of registers,
the same register can be bound to different variables at different points of execution. In case of updating a variable with
a non-immediate value, the new value must be loaded into a register using an instruction similar to (2) before transferring
it to the variable’s assigned memory location. In this case, the register is already bound to a variable and the binding is
not changed when loading the value to the register. Without knowledge of how variables in the program are assigned to
memory or registers, it is hard to determine whether a register load operation such as (2) is a new variable binding to the
register or a new value assigned to an already bound variable. We draw three conclusions that impact the design of our
abstract variable binding algorithm. First, we use absolute memory addresses as our description of a high-level language
variable. Second, we must analyze data flows along an entire trace to determine variable binding information appropriately.
Third, to be able to identify all abstract variables, we must conservatively consider both the above possible scenarios for
each instruction similar to (2).

Abstract variable binding propagates binding information using dynamic data-flow analysis across an execution trace of
the emulated malware. We use both a forward and a backward propagation steps, corresponding to the two different ways in
which a variable’s value may be set. A variable’s value may be an incremental update to its previous value; forward binding
identifies the abstract variables (memory locations) from which a read operation’s address is derived in this case. A variable’s
value may also be directly overwritten with a new value unrelated to its previous contents. Backward binding determines
the appropriate bindings in this case based on the variable’s future use. Our backward binding algorithm is conservative and
introduces imprecision.

A malicious emulator may also attempt to complicate analysis by obfuscating its use of a VPC. For example, it may replace
a single VPC with a collection of variables and switch among the collection during execution. However, the collection must
together still follow an orderly progression and update sequence to ensure that the emulator correctly executes the bytecode.
This fundamental need to maintain consistency will produce data flows between two elements of the VPC collection whenever
the emulator switches from one element to another. Our data-flow analysis will track these flows and remains robust to this
type of emulator obfuscation.

We use the following notations for the presentation of our algorithms. Let M denote the memory address space of the
emulator and R the set of registers available on the target hardware. We uniquely identify abstract variables by memory
addresses using the set α ⊆M . We represent instructions in an intermediate representation that expresses only simple move
and compute operations on registers and memory and has one source and one destination. Let the loading of constant c into
register r be denoted as r ← c. A memory read operation is r ←v [m], which indicates that the value v is read from memory
address m and loaded into register r. Here m can be a constant or register holding an address. Memory writes are denoted
by [m] ←v r. A register-to-register move operation is r1 ← r2. If the right-hand side of any of these operations involves
computation using the specified variable or address, then we denote the assignment as � rather than ←. We identify each
instruction in an execution trace with a sequence number i ∈ N. Let the set ρ ⊆ N consist of all read operations of the
form r ← [m] or r � [m]. Lastly, let the function Addr : ρ→M be defined as: Addr(i) represents the address of a read
operation i ∈ ρ.

3.1.1. Forward Binding. Forward binding identifies those variables supplying the address used by a read operation. The
algorithm works on the execution trace and propagates information forward along the instructions in the trace. For each
register, we track both the set of abstract variables bound to the register and the value stored in the register. A memory
read instruction is bound to the same variable as that bound to the register specifying the address of the read. The set
Bi(r) denotes the abstract variables bound to register r ∈ R at instruction i. Vi(r) represents the value in register r at i.
Forward propagation updates bindings and values according to the following six rules based upon the instruction type. For
convenience, we use the function fi to indicate the computation of instruction i.

F1 r ← c: Bi(r) = {} and Vi(r) = c
F2 r ←v [c]: Bi(r) = {c} and Vi(r) = v
F3 r1 ←v [r2]: Bi(r1) = {Vi−1(r2)} and Vi(r1) = v
F4 r � c: Bi(r) = Bi−1(r) and Vi(r) = fi(Vi(r), c)
F5 r �v [c]: Bi(r) = Bi−1(r) ∪ {c} and Vi(r) = fi(Vi−1(r), v)
F6 r1 �v [r2]: Bi(r1) = Bi−1(r1) ∪ {Vi−1(r2)} and Vi(r1) = fi(Vi−1(r1), v)

Rules F1–F3 apply new register value assignments where values are taken directly from a constant, register, or memory
location. Bindings reset to those of the data source. Rules F4–F6 compute assigned values from the previous register value



and other data; these correspond to incremental updates to a value and do not cause bindings to reset. Rules F3 and F6
correspond to reads using indirect addressing and are points where instruction bindings indicate possible VPC use.

All rules update B and V based on the current and immediate predecessor instructions, so propagation operates from
the first instruction to the last. The algorithm outputs the mapping FB : N → α∗ describing bindings from memory read
operations to abstract variables. Algorithm 1 presents the pseudo-code for forward binding; l is the trace length.

Algorithm 1 Forward Binding
Initialize: ∀r ∈ R : B0(r) = {} and V0(r) = NONE
for i = 1 to l do
∀r ∈ R : Bi(r) = Bi−1(r) and Vi(r) = Vi−1(r)
Update Bi and Vi using rules F1 to F6
if i ∈ ρ and instruction is r1 ←v [r2] or r1 �v [r2] then
FB(i) = Bi(r2)

end if
end for

3.1.2. Backward Binding. We expect realistic bytecode languages to provide one or more types of control transfer operations
such as jumps and branches. Forward binding propagates abstract variable bindings when operations compute an incremental
update to an already-bound variable, which does not reflect the semantics of a control transfer. Control transfers will instead
cause the emulator to directly overwrite the VPC with the target address. The emulator will execute instructions matching
rule F1 or F2, which reset the binding information. Backward binding, a second variable binding step that follows the
forward algorithm, computes bindings in such cases by identifying bound variables when a value is written out to memory
and then propagating the binding backward to all previous uses. This algorithm is conservative and may over-approximate
the actual variable bindings.

Backward binding operates in the reverse order of forward binding. It first binds a variable to a register when that register’s
value is stored to memory, and then propagates the binding backwards to other registers using the following rules:

B1 [r1]← r2 : B′i(r2) = {Vi(r1)}
B2 [c]← r : B′i(r) = {c}
B3 r1 ← r2 : B′i(r2) = B′i+1(r1)

The algorithm outputs the mapping for backward binding BB : N → α∗. Algorithm 2 presents pseudo-code for backward
binding.

Algorithm 2 Backward Binding
Initialize: B′l+1(rj) = {σrj

} for 1 ≤ j ≤ k
Generate Vi(rj) for 1 ≤ j ≤ k and 1 ≤ i ≤ l using Algorithm 1
for i = l to 1 do
∀r ∈ R : B′i(r) = B′i+1(r)
Update B′i using rules B1 to B3
if i ∈ ρ and instruction is r1 ←v [r2] or r1 �v [r2] then
BB(i) = B′i(r2)

end if
end for

3.1.3. Identifying Dependent Abstract Variables. Variables used to contain memory read addresses may themselves be
interdependent. For example, if the obfuscation technique of utilizing a collection of VPCs is used, the VPC related variables
have a relationship with each other. Likewise memory reads that access operands may occur at short, fixed offsets from
the VPC value. We identify dependencies among abstract variables by tracking the flow of data values from one abstract
variable to another. As this is forward data-flow, we incorporate dependent variable identification as part of our forward
binding algorithm.

Let the mapping DV : α → α∗ denote abstract variable dependencies, where Y ∈ α is a dependent variable of X if
Y ∈ DV (X). To populate this mapping, we add the following rule to Algorithm 1:



D1 [r1]← r2 : DV (r1) = DV (r1) ∪ {Bi(r2)}
Dependencies are commutative. After the completion of Algorithm 1, we add the converse of each dependency identified by
the algorithm: ∀X,Y ∈M : if X ∈ DV (Y ) then add Y ∈ DV (X). Identifying these abstract variable dependencies thwart
attacks that introduce extraneous store operations or copy operations from one variable to another before use.

3.1.4. Lifetime of Variables. Our x86 execution trace analysis introduces one final challenge that is often not present when
using high-level language variables. We use absolute memory locations as our abstract variables, but the same memory
location may be used for different variables at different points of execution. Although variables in the static data region have
the lifetime of the entire execution, variables on the stack and heap have shorter lifetimes. The same address can be shared
among multiple variables in different execution contexts depending on the allocation and deallocation operations performed
during execution.

We address the limited lifetime of stack variables by including stack semantics and analysis of the stack pointer register
esp as part of our algorithms. Our set of abstract variables α is made of tuples α ⊆M ×N×N that use integers to denote
the start and end of the variable’s live range within the execution trace. At the first access to a memory address m ∈ M
at instruction s, we add (m, s,∞) to α. If the tth instruction modifies the esp register such that an abstract variable’s
memory address has been deallocated from the stack, then the end of its lifetime is set to t. Any access to the same memory
address after its lifetime expired creates a new abstract variable. For pedagogy, we presented Algorithms 1 and 2 without
live ranges; updates to the algorithms to include lifetimes are straightforward.

In this work, we do not address lifetimes for variables allocated on the heap. Prior heap analysis research [3] often
assumed that the analyzer understood the heap allocation and deallocation routines. We cannot make this assumption for
malware binaries, which may be stripped of debugging information and deliberately obfuscate the heap routines. Further
research is needed to address this open problem.

3.2. Identifying Candidate VPCs

We use the computed variable bindings to identify candidate variables that may be the malware emulator’s virtual program
counter. We first combine the bindings identified by the forward and backward algorithms to compute the complete abstract
variable bindings for each memory read. Let the function Vars : N → α∗ be computed as the transitive application of the
dependence function DV to FB(i) ∪ BB(i) for a read operation i ∈ ρ. We then cluster all read operations within the
execution trace and group together those reads that are bound to common abstract variables. Our clustering uses a simple
similarity metric that treats two reads i1, i2 ∈ ρ as similar if V ars(i1) ∩ V ars(i2) 6= ∅, and dissimilar otherwise. The
clustering algorithm will output n clusters C1, . . . , Cn where each cluster Ci is a set of read operations.

The malware bytecode should be fetched for execution exclusively by memory read operations contained within one of
the n clusters. Abstract variable binding over-approximates actual bindings due to the backward algorithm, which results in
two reads clustered together if they may use the same abstract variable to specify the accessed address. The transitive closure
of the dependencies among abstract variables ensures two reads will be similar even if the reads use two distinct abstract
variables. Therefore, the bytecode program will be completely contained within a cluster. Each cluster is then a candidate
collection of instruction fetches into bytecode, and the common abstract variables at each cluster are candidate VPCs.

3.3. Identifying Emulation Behavior

We analyze each candidate cluster and VPC to find a cluster containing memory reads characteristic of emulation. Decode-
dispatch emulators have fundamental execution properties: a main loop with a bytecode fetch through the VPC, decoding of
the opcode within the bytecode, dispatch to an opcode handler, and a change to the VPC value. For each candidate cluster,
we hypothesize that the memory region read by the cluster corresponds to bytecode and then test that hypothesis. We
determine whether there exists an iterative pattern of bytecode fetches through the associated candidate VPC and updates to
that possible VPC. To detect loops, we first create a partial dynamic control-flow graph (CFG) of the program in execution.
We use the control-flow semantics of the executed instructions to create new basic blocks and split already created blocks.
We use function call semantics to create separate CFGs for each function. Then, we use the standard loop detection methods
used for static intra-procedural CFGs [1].

To find decoding, dispatching, and execution of bytecode after the memory read fetches it from the bytecode buffer, we
analyze how read values are used by other instructions within the execution trace. We use multi-level dynamic tainting [38]
to track the propagation of the data read from instructions in a candidate cluster through the emulator’s code. In contrast to
traditional taint analysis with 0/1 taint labels, we apply multiple labels to memory contents and registers at the byte level.



Different labels track individual data read from the cluster and maintain state information related to which phase—fetch,
decode, dispatch, or execute—that the emulator may be in for a particular read.

We use dynamic taint analysis as follows. For each candidate cluster, we taint the data bytes in the hypothesized bytecode
buffer region of the cluster with the label 〈opcode, id〉 where an id is a unique per-byte identifier. When a read operation
in the execution trace accesses a tainted byte, we mark the instruction as an opcode fetch for the particular id in the label.
If the instruction sequence number is i, then we also taint the forward bound variables FB(i) and the register holding
the address accessed by the read operation with the label 〈vpc, id〉, indicating that it is a VPC for the emulator. Execution
continues until our analyzer detects opcode dispatch behavior.

We identify dispatch behavior by looking for control-flow transfer instructions executed by the emulator that are influenced
by data read from the cluster’s hypothesized bytecode buffer: these are transfers into handlers for specific bytecode opcodes.
In the simplest scenario, an x86 instruction like jmp or call can target an address read from a tainted register or from
a dispatch table accessed through a tainted register. More complex code patterns may include arbitrary data and control
flows between a control-flow target lookup and the actual dispatch. Taint propagation ensures that taint labels transfer from
address to values read through that address, to copies of those values, and to the control-flow transfer. Once detecting a
dispatch-like behavior, the analyzer marks the dispatch instruction with the id of the taint label and the analysis now tracks
the target of the control-transfer as a probable execute routine.

Each subsequent read in the candidate cluster may be accessing a new bytecode, operands for the current bytecode, or
an unrelated memory value included in the cluster due to the imprecision of backward variable binding. We first identify
new bytecode accesses by analyzing the dynamic CFG to see if execution looped since the previous bytecode fetch. If a
loop is not detected, we then check to see if the read is accessing a probable operand in the bytecode buffer. If the register
used to perform the read operation is tainted as 〈vpc, id〉 with the id of the current iteration, and the computation of the
accessed address added a small constant to the candidate VPC value, then the memory access is likely that for an operand.
We consider all other accesses to be spurious.

We consider every candidate cluster containing iterative memory reads in a loop that includes dispatch behavior. There
must be at least two loop executions in the dynamic trace for our analysis to identify the loop.

3.4. Extracting Syntax and Semantics

Once the analyzer identifies the emulation behavior, it reverse engineers each iteration of the emulator loop to extract the
syntax and semantics of the bytecode instruction executed on that iteration. The syntax of bytecode details how to parse the
instruction: its length and the placement of its opcode and operands. Bytecode semantics describe the bytecode’s effect upon
execution of the malware instance. We are particularly interested in identifying bytecode instructions exhibiting control-flow
transfer semantics, as these are the locations where malware analysis techniques such as multipath exploration [21] should
be applied.

We identify the syntax of bytecode instructions by observing the memory reads made from the data regions containing
bytecode, as determined in Section 3.3. To identify the opcode part of the instruction, we apply our taint analysis to determine
which portion was used by the emulator’s dispatch stage for selection of an execution handler. We can identify opcodes at
the granularity of one or more bytes within a bytecode instruction, as our taint analysis works at byte-level. An emulator
may dispatch several different opcodes to the same execution routine because their semantics may be similar. As a result,
we count the number of instructions in the bytecode instruction set as the number of unique execution routines identified in
our analysis.

The execution routine invoked by the emulator for the bytecode’s opcode encodes the semantics of the opcode. We find
control flow transfers by analyzing the changes made by an execution routine upon the VPC of the emulator. Unconditional
transfers, including fall-through instructions, will always set the VPC to the same value on every execution of that instruction.
Commonly, fall-throughs simply advance the VPC to the next instruction in sequential order, a regular update pattern that
can be readily identified. Conditional control-flow transfers and transfers to dynamically-computed targets will update the
VPC in different ways upon repeated execution of the bytecode instruction.

By determining how to parse the bytecode buffer and by locating control-flow transfer opcodes, we are then able to
construct a control-flow graph (CFG) for the bytecode. The locations of the control-flow transfers and their target addresses
within the bytecode stipulate how to divide the entire bytecode buffer into basic blocks. The transfers then produce edges
between the blocks corresponding to possible VPC changes during emulated execution. The CFG structure provides a
foundation for subsequent malware analysis.



Figure 3. Analysis Process Overview

4. Implementation

Our automatic reverse engineering occurs in three different phases: dynamic tracing, clustering, and behavioral analysis.
Figure 3 shows the different phases of our process and the interactions among the architectural components used by the
different analysis steps. The dynamic tracing phase gathers run-time data related to a malware emulator’s execution, and
allows the clustering and behavioral analysis phases to extract malware bytecode and the syntactic and semantic information
for the bytecode instruction set.

There are two important requirements for the run-time environment of the dynamic tracing phase: instruction-level tracing,
and isolation from malware and attacks. Since the analysis techniques in Rotalumè are orthogonal to the underlying run-time
environment and our goal here is to develop and evaluate these techniques, we implemented our dynamic analysis techniques
on top of QEMU [6], which emulates an x86 computer system. For a deployable version of Rotalumè, we suggest using a
more transparent and robust environment, such as a hardware virtualization based system like Ether [12]. The components
in the latter two phases were developed as an offline analyzer written in C++. In our current prototype implementation,
each individual phase is activated manually using the result of the previous phase. However, our design can be completely
automated to process large numbers of malware samples.

4.1. Dynamic Tracing

The first phase collects the dynamic instruction trace of the emulator program that is executing as the QEMU guest
operating system. We modified QEMU by inserting a callback function that invokes Rotalumè’s Trace Extractor Engine
(EE) for every instruction executed in QEMU. The EE component collects necessary context information related to the
executed instruction and stores the intermediate-representation (IR) that is used in latter phases of the system. Our IR is
self-contained—we store the instruction representation as well as the values of the operands involved in the instruction.
We log all information so that we may perform off-line analysis without requiring additional dynamic analysis. The output
information of this phase is represented by the dynamic trace of the program in IR form.

4.2. Clustering

The second phase clusters the memory read operations visible in the trace. We group together every read operation
performed by the program based on the common variable used to access that read memory location. This phase is performed
by two main components: the Binding Engine (BE) and Clustering Engine (CE). The BE component is a program that
takes as input the IR dynamic program trace and applies the backward and forward abstract variable binding algorithms
described in Section 3.1. For each algorithm, we store binding information differently. More specifically, for each instruction
in forward binding, we store the following information: instruction id (a unique identifier for each instruction present in the
dynamic program trace IR), the destination register operand of the instruction, and the bound variables associated with the
destination register according to the rules described in Section 3.1.1. For each instruction in backward binding, we store the
instruction id and the bound variables associated with the registers or memory locations according to the rules defined in
Section 3.1.2. The BE component provides the binding information to the CE. The CE component is a program that inputs
the IR dynamic trace and the binding information, and applies the clustering algorithm. At a high level, CE takes the union
of forwarding and backward binding information, applies the dependence function in Section 3.2, and provides the cluster



information. The cluster information contains a vector of sets where each set contains the addresses of the memory read
instructions that are accessed by the same variable. At the end of this phase, the cluster information is saved to a file.

4.3. Behavioral Analysis

The behavioral analysis phase provides the final information output of Rotalumè. We implemented a behavioral analyzer
composed of two sub-components: the Taint Engine and the Emulation Behavior Detector. The behavioral analyzer is a
program that takes as input the IR dynamic trace and clustering information, and analyzes one cluster at a time. For each
cluster, the Taint Engine taints the memory address contained in the cluster and activates the Emulation Behavior Detector.
This analyzer is a state machine that follows the tainted addresses and identifies the emulation behavior, as described in
Sections 3.3 and 3.4. Whenever the analyzer recognizes an opcode, the system stores information of the opcode into a file.
More specifically, the analyzer stores for each opcode executed: its opcode value, the operands’ values, and the x86 code
in assembly format associated with the executed opcode.

5. Evaluation

We evaluated Rotalumè using both synthetic and real programs that include both legitimate applications and malware.
These programs are obfuscated to run on three commercially available packers that support emulation: Code Virtualizer [23],
Themida [24], and VMProtect [35]. VMProtect and Code Virtualizer convert selective functions of a given binary program
into a bytecode program with a randomly generated bytecode language. Themida, which is more widely used for malware,
does not apply emulation to the given malicious binary program but rather to the unpacking routine and the code that invokes
API calls.

5.1. Synthetic Tests

We first experimented with synthetic test programs. Our goal was to use the ground truth of the synthetic programs to
evaluate the information about the extracted bytecode program and the syntax and semantics of the virtual instruction set
architecture identified by Rotalumè. We used Code Virtualizer and VMProtect because they can obfuscate any user-specified
function in a program.

Table 1. Description of Synthetic Test Programs

Function Description x86 Program x86 Trace
Inst. C-Flow Inst. C-Flow

Synth1 No branch 24 1 24 1

Synth2 Nested if 61 11 21 7

Synth3 Loop and if 55 10 270 54

We wrote three simple synthetic test programs in C. Each test program contained a function with distinguishable control-
flow characteristics that we wanted to obfuscate. We compiled these programs and converted them to x86 binaries. We
analyzed the static characteristics of the compiled code using IDAPro [13] and the dynamic characteristics by tracing the
programs in our QEMU-based system. Table 1 lists information about the three functions of these test programs. For each
function, the table shows the total numbers of x86 instructions (“Inst.”) and control-flows instructions (“C-Flow”) obtained
from static analysis. The total numbers of x86 and control-flow instructions in an execution trace of the functions, obtained
from dynamic analysis, are also shown. synth1 involves simple computation without any conditional branch or function.
synth2 contains nested if statements, and hence its execution trace contains only a part of its (static) program instructions.
Finally, synth3 contains both if statements and a for loop. Its trace length was larger than the static x86 instruction
count because of loops.

We used VMProtect and Code Virtualizer to obfuscate the selected functions in our three test (binary) programs. We
then applied Rotalumè to analyze them. Rotalumè was able to correctly identify emulation behavior in all of the test cases,
and Tables 2 and 3 summarize respectively the results of reversing Code Virtualizer and VMProtect. The results show
information for bytecode instructions traced and identified at run-time in terms of the instruction counts (of all types and the
control-flow instructions) of the bytecode execution trace and the program itself. The results also show the virtual instruction
set architecture (ISA) discovered by Rotalumè in terms of the number of unique bytecode instructions, information regarding



Table 2. Results of Synthetic Programs Obfuscated with Code Virtualizer

Subject Bytecode Trace (inst. count) Bytecode Program (inst. count) Virtual Instruction Set Architecture
All types C-Flow All types C-Flow All types C-Flow (Cond.) 0 Opr 1 Opr 2 Opr

Synth1 277 1 277 1 23 1 (0) 3 6 15

Synth2 254 7 254 7 27 3 (1) 4 8 16

Synth3 3481 54 684 8 31 3 (1) 4 9 18

Table 3. Results of Synthetic Programs Obfuscated with VMProtect

Subject Bytecode Trace (inst. count) Bytecode Program (inst. count) Virtual Instruction Set Architecture
All types C-Flow All types C-Flow All types C-Flow (Cond.) 0 Opr 1 Opr 2 Opr

Synth1 497 1 497 1 16 1 (0) 4 8 4

Synth2 442 7 442 7 18 2 (0) 4 9 5

Synth3 5709 54 785 8 18 2 (0) 4 9 5

the syntax of the bytecode language in terms of number of operands, and information regarding the semantics of conditional
control-flow transfers.

In both VMProtect and Code Virtualizer, the bytecode trace of a program was significantly longer than its original x86
binary. For example, synth3 executed 3,481 bytecode instructions of Code Virtualizer and 5,709 of VMProtect, compared
to just 270 x86 instructions in the original program. The results also show that for all test cases, Rotalumè accounted for
the same number of control-flow instructions in the bytecode execution trace as in the original x86 execution trace. This
shows that Rotalumè was able to extract the control-flow information of the original programs.

Table 3 shows that for both synth2 and synth3, the VMProtect virtual ISA extracted by Rotalumè does not have
conditional control-flow instructions, unlike the results from Code Virtualizer. We investigated this discrepancy by analyzing
the x86 execution traces of VMProtected software and then comparing with the bytecode information provided by Rotalumè.
We found that Rotalumè correctly identified the decode, dispatch, and execution routines of the emulator. We manually
analyzed the traces of the execution routines and did not find any x86 conditional branch instruction. This means that there
were no conditional jumps in the bytecode program traces. By carefully analyzing the semantics of the instructions before
the control-transfer instruction, we confirmed that VMProtect emulates conditional branches by dynamically computing the
target address and using a single jump instruction.

Figure 4 shows that the control-flow graphs extracted by Rotalumè for synth3 are very similar to that of the original
x86 program. Figure 4(a) shows the original x86 program’s CFG, and it contains a loop with two conditional branches. The
graph shows that basic block B12 was not executed during execution. Figure 4(b) shows the CFG of the Code Virtualizer
bytecode program trace as extracted by Rotalumè. The two CFGs show identical control-flow semantics. Interestingly, we
also could identify that there is an unexplored path from basic block B7. This was possible because Code Virtualizer’s
bytecode language has a conditional branch instruction that was identified by Rotalumè even though it was not executed.
This shows a key benefit of our approach: other analyses such as multipath exploration [21] can be selectively applied to
explore such paths in the emulated malware bytecode rather than in the entire emulator.

The CFG in Figure 4(c) is for the VMProtect bytecode trace. Since we found that VMProtect’s bytecode has no explicit
conditional branches, we are unable to provide information about a possible path that was not executed in the trace. However,
we can identify the dynamically computed control-flow instructions in the trace and mark where analysis of possible branch
target addresses needs to be applied. Thus, we can still uncover the control-flow information of the bytecode program. The
CFG shows the existence of the loop and the condition but the number of basic blocks is fewer than the original CFG. This
likely occurs because VMProtect applies optimization on the bytecode.

5.2. Real (Unpacked) Programs

We next tested on a real program obfuscated with emulation by comparing the extracted bytecode information against the
original x86 program. We selected a malware program that is not packed because self-modifying code can not be translated
into bytecode. We randomly selected the Killav.PS malware identified as a Trojan by Avira Antivir antivirus software [2].
We then applied VMProtect on the binary. We were unable to use Code Virtualizer on this real software because Code
Virtualizer requires a .map file, which is usually generated at compile time and hence not available with malware. Table 4
shows the results of using Rotalumè with various levels of obfuscation applied to the binary.
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Figure 4. Comparison of x86 and bytecode CFGs of the Synth3 test program

Table 4. TR/Killav.PS obfuscated by VMProtect

Description Dyn. x86 CFG Dyn. BC CFG
Inst. (BB) Inst. (BB)

Original 1528 (435) ×
1 function packed 3618 (738) 2617 (16)

5 functions packed 4103 (801) 3830 (49)

We selected one large function in the malware and used VMProtect to convert it into bytecode. The table shows that the
x86 code size grows after obfuscation because the new binary additionally contains the emulator’s code. Rotalumè extracted
the bytecode trace and the dynamic CFG of the obfuscated function. We compared the results with the original x86 version
of the obfuscated function. Although the bytecode version had only 16 basic blocks compared to the 24 blocks of the original
(not shown here; the table instead shows the size of the whole binary including the emulator), the control-flow attributes
were very similar. Figure 5 in Appendix A shows the graphs of the two functions side by side for comparison. From the
CFGs, it seems that some basic blocks may have been combined due to code optimizations performed on the bytecode
by VMProtect, but similar loops and branches were identifiable. This shows that Rotalumè indeed correctly extracted the
bytecode syntax and semantics. We tested another obfuscated version of the malware where we selectively obfuscated four
additional functions. In that case, the x86 code increased less substantially, and Rotalumè successfully extracted the bytecode
syntax and semantics of those functions.

Table 5. Tests on CMD.EXE obfuscated by VMProtect

Description Dyn. x86 CFG Dyn. BC CFG
Inst. (BB) Inst. (BB)

Original 8458 (1143) ×
1 function packed 10429 (1345) 3488 (31)

5 functions packed 10512 (1394) 12345 (103)



Finally, we tested Rotalumè after applying emulation to a legitimate program. Using CMD.EXE, we performed experiments
similar to those for the unpacked malware. Table 5 presents the results. The bytecode CFG that we obtained contained 31 basic
blocks instead of the 36 in the original function. Figure 6 in Appendix B shows the control-flow graphs of a large function
of CMD.EXE. We show the original x86 code’s CFG in Figure 6(a) and the bytecode version extracted by Rotalumè from
the VMProtect obfuscated sample in Figure 6(b). We found that some parts of the graphs matched perfectly, with differences
in other parts likely due to code transformation and optimization differences.

5.3. Emulated Malware

We next evaluated Rotalumè on real malware samples that use emulation based packers. We selected samples that are
packed with Themida, VMProtect, and Code Virtualizer, the three known commercial packers that use emulation. We have
access to thousands of malware samples, from which we identified the ones packed using these three tools. We then applied
Rotalumè to a randomly selected set of these malware samples.

Table 6. Malware Packed With Themida

Description x86 Dyn x86 BC Dyn BC
Trace CFG Trace CFG

Inst. (BB) Inst. (BB)

Themida5 15.3M 9753 (2156) 15232 3421 (57)

Themida1 1.4M 5961 (1156) 1339 1339 (6)

Themida3 14.8M 10211 (2125) 2142 2142 (15)

Themida7 21.4M 14205 (3529) 5171 3042 (28)

Themida8 3.5M 6011 (2125) 1534 1534 (9)

Themida11 11.1M 9021 (2925) 1784 1784 (10)

Themida13 11.4M 10211 (3194) 19642 4142 (65)

Themida14 17.3M 11492 (2877) 14219 3751 (75)

Among the three obfuscators, Themida is the most widely used within our malware samples. Themida is known not to
emulate the code of the original program but rather the unpacking routine. Nevertheless, we wanted to evaluate whether
Rotalumè can reverse engineer the emulator. Table 6 shows the results of Rotalumè’s output on 8 randomly selected samples.
We obtained the names of these samples by submitting them to VirusTotal [34] and selecting the name that was most common
among the AV tools. For each sample, we gathered the execution trace when running it for 20 seconds. The table first shows
the length of the x86 trace as well as the counts of instructions (“Inst.”) and basic blocks (“BB”) in the dynamically created
CFG of the x86 code. Our analyzer was able to detect the emulator in all cases: the table shows information for the extracted
bytecode trace, and we built the control-flow graph using the extracted control-flow semantics of the bytecode language. We
do not show the syntax and semantic information of the bytecode instruction set here because we found that the instruction
sets consistently contain 31 instructions. However, the syntax of the instructions varied, showing that the instruction sets
were highly randomized. We also manually analyzed the instruction set and observed that the semantics were very close to
that from Code Virtualizer. This is not surprising given that both tools are from the same vendor [22] In all samples, the
x86 CFG is very large compared to the corresponding bytecode CFG. Again, this shows that Themida was not designed to
obfuscate a program completely with emulation.

Table 7. Malware Packed With VMProtect

Description x86 Dyn. x86 BC Dyn. BC
Trace CFG Trace CFG

Inst. (BB) Inst. (BB)

Win32.KGen.bxp 3.1M 2122 (591) 1112 1112 (9)

Win32.KillAV.ahb 1.4M 4104 (1156) 1231 1231 (12)

Graybird 131K 823 (275) 2926 1584 (18)

Win32.Klone.af∗ 5.0M 4263 (707) 1241 1241 (17)

Win32.Klone.af∗ 3.2M 4123 (484) 1149 1149 (14)



We then experimented with a group of randomly selected samples that use VMProtect. We present the results of 5
samples in Table 7. Rotalumè was able to detect the emulation process in each of the samples and produced the syntactic
and semantics information of the bytecode language, the bytecode trace, and the CFG. Rotalumè identified 18 bytecode
instructions in the instruction set for each case. This matched the output from the synthetic test samples synth2 and
synth3 in Table 3. Interestingly, the syntax was also the same. Like the Themida samples, these samples had very small
amounts of code emulated. We conjecture that the malware authors likely had used the demo version of VMProtect, which
only allows conversion of one function of the binary into bytecode.

Table 8. Malware Packed With Code Virtualizer

Description x86 Dyn x86 BC Dyn BC
Trace CFG Trace CFG

Inst. (BB) Inst. (BB)

Win32.Delf.Knz∗ 7.0M 2249 (608) 114526 10054 (343)

Win32.Delf.Knz∗ 15.5M 2594 (720) 234012 25221 (742)

Win32.Delf.Knz∗ 14.5 2531 (738) 215892 19850 (771)

We also experimented with recent malware samples that use Code Virtualizer. Table 8 shows the results. All of the samples
were identified with the same name in VirusTotal even though their program sizes and MD5 checksums varied. After analyzing
these malware samples with Rotalumè, we found that unlike samples we tested with Themida and VMProtect, these samples
have large portions of their code converted into bytecode. The bytecode CFGs of these programs varied significantly, showing
that they may be quite different programs even though they share the same name.

6. Discussion

In this section, we discuss three open problems and challenges: alternative emulator designs, incomplete bytecode
reconstruction, and code analysis limitations.

First, our current work assumes a decode-dispatch emulation model, thus, malware authors may implement variations or
alternative approaches to emulation [5], [16], [19], [30] to evade our system. For example, our loop identification strategies of
Section 3.3 are not directly applicable to malware emulators using a threaded approach. However, the methods of identifying
the candidate bytecode regions and VPC’s are still applicable. As discussed in Section 2.2, our approach is not applicable
to dynamic translation based emulation as well. In dynamic translation, the emulator dynamically generates new code that
the program subsequently executes, thus, we expect that heuristics used by unpackers to detect unpacked code will be able
to detect the translated instructions. The translated native code should provide opportunities to trace back to the translation
routines and then utilize our methods for identifying bytecode region and the VPC context. More generally, we believe that
our fundamental ideas and techniques are applicable to other emulation models: by analyzing an emulator’s execution trace
using a given emulation model, we can identify the bytecode region and discover the syntax and semantics of the bytecode
instructions. The main challenge in future research is to identify observable and discernible run-time behavior exhibited by
sophisticated emulation approaches.

Malware using decode-dispatch emulation may attempt to evade accurate analysis by targeting specific properties of our
analysis. For example, since our approach expects each unique address in memory to hold only one abstract variable, an
adversary may utilize the same location for different variables at different times to introduce imprecision in our analysis.
Our system will put the memory reads performed using these variables into the same cluster due to the conservativeness of
our analysis. If the additional data included in the cluster containing the bytecode program is used in decode or dispatch-like
behavior, they may be incorrectly identified as bytecode instructions.

The second open problem is how to reconstruct complete information about the bytecode instruction syntax and semantics,
so that a system can extract the entire emulated malware bytecode program. Using dynamic analysis, we extracted execution
paths in the bytecode program and the syntax and semantics of the bytecode instructions used in those paths. However,
the paths may not have utilized all of the possible bytecode instructions supported by the emulator, though they may be
used in other execution paths of the program. A plausible approach would apply static analysis on the dispatch routine once
our system has identified the emulation phases correctly. More specifically, once the dispatching method is identified, static
analysis and symbolic execution may identify other execution routines and the opcodes of the bytecode instructions that
invoke their dispatch. This provides the syntactic and semantic information of the bytecode instructions even though they
are not part of the executed bytecode.



A subsequent open problem is utilizing the discovered syntax and semantics to completely convert bytecode to native
instructions. A solution is possible only when all execution paths of the bytecode program can be explored. A potential
solution is to use previous techniques employed for multi-path exploration [21] with the help of discovered control-flow
semantics of the bytecode. However, emulators may be written so that specific control-flow semantics need not be supported
in the bytecode language. Such is the case for VMProtect, where we have only identified unconditional branches. In such
bytecode languages, the effects of conditional branches are performed in the program by dynamically computing the target
address based on the condition and then using an unconditional branch to the specific target (an example was provided in
Figure 2). More research is required before multi-path exploration can be applied to programs written in such languages.

Another related problem is the use of recursive emulation, which converts the emulator itself to another bytecode language
and introduces an additional emulator to emulate it. The recursive step can be performed a number of times by a malware
author, with size and performance increases as the limiting factors. The solution is to first apply our reverse engineering
method to the malware instance, use the discovered syntax and semantics to completely convert the bytecode program into
native binary code, and then apply our method (recursively) on the converted program to identify any additional emulation-
like behavior.

Third, as with all program analysis tasks, reverse engineering of emulators also faces the challenges of heap analysis
imprecision, limitations of loop detection, and so on. The techniques to address these problems are orthogonal to our
techniques in reverse engineering.

7. Related Work

Malware authors have developed obfuscation schemes designed to impede static analysis [8], [18], [25], [26]. Dynamic
analysis approaches that treat malware as a black box can overcome these obfuscation schemes, but they are able to observe
only a small number of execution paths. Several approaches have been proposed to address this limitation. Moser et al.
proposed a scheme [21] that explored multiple paths during malware execution. Another approach [36] forces program
execution along different paths but disregards consistent memory updates. Rotalumè, these solutions are unable to properly
analyze emulated malware because they will explore execution paths of the emulator rather than that of the bytecode program.

Malware authors have broadly applied packing to impede and evade malware detection and analysis. Several approaches
based on the general unpacking idea have been proposed [14], [20], [27]. For example, Polyunpack performs universal
unpacking based on a combination of static and dynamic binary analysis. Given a packed executable, Polyunpack first
constructs a static view of the code. If the executable tries to execute any code that is not present in the static view,
Polyunpack detects this as unpacked code.

Recently we observed a new trend in using virtualizers or emulators such as Themida [24], Code Virtualizer [23], and
VMProtect [35] to obfuscate malware. These emulators all use a basic interpretation model [31] and transform the x86
program instructions into its own bytecode in order to hide the syntax and semantic of the original code and thwart program
analysis. Moreover, by using a randomized instruction set for the bytecode language together with a polymorphic emulator,
the reverse engineering effort will have to be applied to every new malware instance, making it very difficult to reuse
the reverse engineered information of one emulator for another. We argue that this trend will continue and that a large
portion of malware in the near future will be emulation based. There is no existing technique that can reliably counter an
emulation-based obfuscation technique.

Researchers have proposed using a randomized instruction set with emulation as a software defense against code injection
attacks. Kc et al. [15] and Barrantes et al. [4] developed approaches that converted a binary program’s native instructions
into a per-process randomized instruction set. Since an adversary trying to exploit vulnerabilities will not have knowledge
about the random instruction set, injected code will not run properly and will cause the program to crash. Subsequent work
by Sovarel et al. [32] discussed the effectiveness of instruction set randomization techniques against various attacks.

There are research approaches for analysis and reverse engineering of bytecode for high-level languages such as Java [9],
[33]. However, these approaches assume that the syntax and semantics of the bytecode are public or already known. This
assumption fails to hold for malware constructed using emulators such as Themida, CodeVirtualizer, or VMProtect [23],
[24], [35]. These emulators perform a random translation from bytecode to destination ISA, so the connection between the
bytecode and final ISA is unknown.

In order to overcome these emulation-based obfuscation techniques, we need analyzers that are able to reverse engineer
the emulator model and extract the bytecode syntax and semantics. This is a new research area. In a related area, protocol
reverse engineering techniques [7], [17], [37] have been proposed to understand network protocol formats by automatically
extracting the syntax of the protocol messages. Tupni [10] automatically reverse engineers the formats of all general inputs
to a program. The analysis techniques for extracting the input or network message syntax assume that they can be found at



predefined locations in the program. In contrast, one of the main challenges in malware emulator analysis is to find where
the bytecode program resides.

8. Conclusion

In this paper, we presented a new approach for automatic reverse engineering of malware emulators. We described the
algorithms and techniques to extract a bytecode trace and compute the syntax and semantics of the bytecode instructions by
dynamically analyzing a decode-dispatch based emulator. We developed Rotalumè, a proof-of-concept system, and evaluated
it on synthetic and real programs obfuscated with Code Virtualizer and VMProtect. The results showed that Rotalumè was
able to extract bytecode traces and syntax and semantic information. For future work, we plan to address the challenges of
reverse engineering other types of emulators. We also plan to develop algorithms to extract higher level instruction semantics
that include data-flow information, and to completely convert an extracted bytecode trace back to x86 form. We hope that
our work will help spawn research in several other related areas, such as reverse engineering of script interpreters.
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Appendix

1. Control-Flow Graphs for the Unpacked Malware Sample

Figure 5 shows the control-flow graphs of the x86 trace and the bytecode trace extracted by Rotalumè for the experiment
on malware sample Killav.PS. Each node in the graphs show the number of x86 or bytecode instructions identified in
the basic block. The loop backedges show similarity between the extracted CFG and the original CFG.

2. Control-Flow Graphs for CMD.EXE

Figure 6 shows the control-flow graphs of a large function of CMD.EXE. We show the original x86 code’s CFG in
Figure 6(a) and the bytecode version extracted by Rotalumè from the VMProtect obfuscated sample in Figure 6(b). This
huge function contained many nested loops and conditional branches. Although the two graphs may look very different at
a fist glance, they are actually similar upon close inspection. For example, B928 and B733 in x86 version were collapsed
to form B13 in the bytecode version. The loop backedge from B929 to B731 is evident in the bytecode version as the edge
from B14 to B10. There are more similarities like this in a few parts of the graphs. The reason for most of the differences
may be due to code optimization, block collapsing, or the ways conditional branches are performed and branch target is
computed (e.g., B20 for this reason has two outgoing edges).
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